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A TEST OF THE TWO-SAMPLE PROBLEM WITH NUISANCE LOCATION AND
SCALE PARAMETERS, AND AN ESTIMATE OF THE SCALE PARAMETER
by

Saul Blumenthal

I. Introduction

We consider here two related problems. The first can be viewed as
an extension of the classic two-gample problem which asks whether two
samples have the same underlying distribution. Thus, given two indepen-

dent samples Xl,..., Xn H Yl,..., Yn where the X, are mutually inde-

b

pendent with common c.d.f F(x), and the Y, are mutually independent with

i
common ¢.d.f G(x), the classic two-sample hypothesis is that F(x) equals
G(x) and the alternative is that F(x) and G(x) are not identically
equal. If the two-sample hypothesis is true and (AXi + B) is substituted
for X, ({f =1,...n) (A >0, B recal) before the test is made, any consis-
tent test for the classic problem would reject the hypothesis with a high
probability. The numbers A and B represent nuisance scale and loca=-
tion parameters and do not affect the form of the distribution of (AXi + B).
Under some circumstances, the relevant question might be whether F(x) and
G(x) &are of the same form even though they differ through the presence of
the above mentioned scale and location parameters. Formally, the hypothesis
would be that F(x) = G(Ax + B) for some unspecified pair A, B (A> 0, B
real;. The alternative is that the above equality does not hold. We pro=-
pose a family of test statistics, all members of which lead to a consis-

tent test of the last named hypothesis under some mild restrictions on the

form of F(x) and G(x).




Having described the general hypothesls which we are testing, we
shall suggest some specific instances where it would be useful. The
range of application will be seen to be essentially the same as that of
the classic two-sample test. If the experimenter wants to test whether
two distributions are identical and he knows that the measurements on the
two populations have been made with instruments whose zero and scale calie
brations are different, then he can use the proposed test to eliminate the
effect of'these extraneous factors. If he knows the numerical values of
the 7ero and scale factors and can adjust the data to a common zero and
scale, then the usual tests would be more efficient.

The experimenter might consider two populations the same if they
both have distributions of the same form even though they differed in a
scale and location parameter. Here again the proposed test is applicable.
For example, two machines might be considered interchangeable if some
measurable characteristic of their output has the same distribution for
each machine. It might not be feasible however at the time of making the
test to adjust the machines so that the scale and location parameters of
the output distributions are the same. Alternatively, through some
accident, the machines might have been adjusted differently at the time
the data were collected, énd re-adjusted subsequently so that at the time
the statistician gets the data there is no way of knowing what the rela-
tive scale and location settings were at the time of data collection.
Using the proposed test, such data would not have to be discarded.

A further use of the test would be to detect e "linear drift".
Suppose it is believed that observations at time zero have & distribution

F(x) (unspecified) and that observations at some fixed later time can be
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considered to be of the form AY + B where again Y has the distribution
F{x). Then the proposed test will relect the hypothesis if either the
distribution of Y is not F(x) or if the linear model AY + B is not
correct.

Th; second problem is that of estimating the scale parameter A,
assuming that F(x) = G(Ax + B) (A > 0, B real). Apain a family of esti-
mates 1s proposed, each member of which provides a consistent estimate of
A under the same mild restrictions on F(x) that are made for the test
of hypothesis.

This estimation problem could arise in several ways. After accepting
Ho’ the experimenter might want an idea of the size of the scale parameter
A. Alternatively, assuming Ho to be true on the basis of theoretical
considerations, "A" mipght represent some physical characteristic which
the experimenter wants to measure. Tf he is unwilling to make specific
assumptions about the type of distribution invelved, the proposed esti-
mates with their fairly weask assumptions can be used. If, alternatively,
the experimenter does know more about the distrikuiions, br. "inds compue
ting "best" estimates is too difficult, the proposed estimates might
egain he useful.

A common problem where such an estimate is needed is in the case
where a time factor introduces a linear drift into the otservations. If
811 the X's are assumed to have been measured at time to and the Y's
at another time tl, then the assumed model would apply.

In Section 2, we describe the proposed statistics in detail and

discuss their properties. Section 3 consists of an example of the



computations involved. The following Section is concerned chiefly with
establishing the consistency of the proposed estimates and tests. The
important question of the distributions or even the asymptotic distri.
butions of the proposed statistics is discussed only briefly in Sectlon

5. Section 6 raises some additional questions.




2. The Test and The Estimator

Let xl,... , Xn 3 .Yl,..., Yn be two independent sets of mutually

independent random variables. Let F(x) be the common c¢.d.f of the

X (L =1,...,n) and G(x) be the common ¢.d.f of the ¥, (1 =1,..0,n).
We shall list in Section 4 the necessary regularity conditions on F(x)
and G(x). Let X} <X) <...<X! Dbe the ordered values of Xj,.ve,X
and Yi < Yé L0 < Yr’1 be the ordered values of Yl, crey Yn‘ Define

1 - t ! - ' = s - .
u; as (xi+l xi) and V, as (Yi+1 Yi) (1 =12,..., n-1). Let a,

8, py u, v be arbitrarily chosen numbers satisfying the following res-
trictions:

(2.1) 0<a, pS1;0<b<3;0<u<v<l.

We then define the following statistics:
i=[n-nl/2 ¥ 6]

((sin np/nnp) y (Ui/vi)p 0<p<1
i=[nl/2 + 8y

(2'2) Sn (P,B) = <

i= [n_nl/z + 8

1/n 1 > (u,/v,) p=1
| (+/n 1o n) (/2 * B v

[nv-1]
f (sin np/nnp(v-u)) 5y (Ui/vi)p 0<p<1l

i=[nu+1]

(2.3) s (p,u,v) = ¢ oot ]
nvs=
(2/n (v-u)log n) )} (u,/v,) p=1

\ i=[nu+l]

wvhere [A] is the greatest integer less than or equal toX.



Similarly, define S;(p,ﬁ) and Sﬁ(p,u,v) by replacing (Ui/Vi) by
(Vi/Ui) in the corresponding definitions for Sn(p,a) and Sn(p,u,v).
We desire to test the hypothesis
H : F(x) = G(Ax '+ B)

(2.4) °©

H, : F(x)  G(Ax + B).

The first proposed family of tests is to reject Ho if the product
Sn(p,a)SA(p,E) is "too large". The second proposed family of tests is
to reject H_ if the product Sn(p,u,v)sg(p,u,v) is "too large". When
F(x) and G(x) satisfy conditions (4.2) to (4.4), we show in Section 4
that sn(p,s) s;(p,a) converges stochastically to unity when H_ = is
true and to a quantity greater than unity otherwise. This implies thet
the proposed tests are consistent against alternatives F(x), G(x) satis-
fying these conditions. We show also that the tests are consistent
against distributions which satisfy only condition (4.2). Derivations
from condition (4.2) can lead to situations in which H_ 1is not true
and the probability of rejecting Ho will not tend to unity as n
inereases. This can happen when one of the distributions has a flat
section. An example is given by (4.30). If Ho is true and conditions
(k.2) to (4.4) are violated, the test will tend to accept H, ;n some
cases and reject Ho in others.

Under the weaker assumptions (4.1) the proposed tests based on
Sn(p,u,v) Sé(p,u,v) can be shown to be consistent by the same type of
argument as above. Again, violation of this condition will lead to the
situation described above. Although the Sn(p,u,v) family of tests

requires weaker assumptions regarding the form of F(x) than does the
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Sn(p,s) family to guarantee the same operating properties, the

Sn(p,u,v) tests require that a fixed percentage of the observations must
be ignored, whereas the percentage ignored by the Sn(p,s) family goes
to zero with n. Both families of tests are invariant under separaste
linear transformation on the X's and Y's. This is a reasonable require-
ment for any test of Ho.

The choice of p would presumably be dictated by power considera-
tions. Power depends on distributions, and we know almost nothing about
these.

Assuming that F(x) = G(Ax + B), we propose to estimate the scale
factor A by Sg(p,b) if assumptions (4.2) to (4.4) are satisfied, or
by Sé(p,u,v) if condition (4.1) is satisfied. The consistency of
these estimates follows from Theorem 2, Lemma 2, and Theorem 3. Again

choice of p depends on the unknown distributions of the statistics.



O OO N1 Ol =D

=
o

3. Computational Example

To 1llustrate the type of computations involved,we shall compute the

scale parameter estimate Sa(p, .1, .9), with n = 10 for convenience.

The X's represent ten observations which were taken from & uniform dis-

tribution on the unit interval by means of a table of random numbers.

The Y's represent ten observations from & uniform distribution on the

interval from zero to five.

Thus the factor A to be estimated is five.

The table below shows the steps needed to go from the Xi and Yi to the

i

X! and Yi (ordered values) to the

Ui and V

i

(aifferences) to obtain

finally the estimator Sﬁ(p,u,v). Two values of p are used, p = 1/2

and p = 1 to illustrate the two types of estimators described.

%

12586
. 30061
.31694
.18813
.05275
79607
. 34900
.23016
. 38840
.28624

1
X

05275
.18813
23016
28624
. 30061
31694
.34900
.38840
72586
.79607

Uy

.13538
04203
.05608
01437
.01633
.03206
.03940
-33746
.07021

Y3

b, 4hs15
0.72285
2.78165
4.51455
0.06115
4.77130
0.488%90
L4.82835
1.3451%
3.35785

1
Yi

0.06115
0.488%
0.72285
1.34515
2.78165
3.35785
L.hhsa:
L.51455
L. 77130
4.82835

vy

0.42775
0.2339;
0.6223%0
1.43650
0.57620
1.0873%0
0.06940
0.25675
0.05705

v,/U,
3,160
5.566

11.097

99.965

35.285

33.914
1.761
0.761
0.813

From (2.3), we see that to compute Sio(l, 1, .9), we must sum

(vi/ui)l/a

1.718
2.379
3.331
9.998
5.94%
5.82k
1.327
0.872
0.902

(Ve/Ua) through (ve/ua), and divide the total by (.8)(10) log 10, which

is 18.421. The total is 188.350 and thus our estimate Sio(l, g, .9)

is 10.225. To obtain Sio(l/a, 1, .9), we sum (Va/Ua)J'/2 through

8




(V8/08)1/2 and divide by (8)(10)(w/2) (since sin nf2 = 1) which is
12.566. The total here is 29.651 and thus our estimate Sio(l/Q, .1, .9)
is 2.360. It is seen that one estimate is more than double the true
value while the other is less than half., Thus, neither is particularly
good.' Since the sample size is quite small, we would not expect the
asymptotic properties of the estimator to have any bearing and this ex-
ample can be considered as an illustration of the danger of using a small

sample when the small sample properties of the statistic are not known.




4, Convergence of thé Statistics

. | e 1, t < '

Let xl,,...,xn 3 Yl""’Yn and Xls an 3 and Yls aes SYn

be as described in Section 2., We ghall list below regularity conditions
on the distributions F(x) and G(x). These conditions will sometimes
overlap, and not all of them need be satisfied for the stochastic con-

vergence of a particular family of statistics. We state the conditions

in terms of F(x) for convenience.

(4.1) For a given pair of numbers, us, vy (o< u <v < 1) F'l(uo) and
F'l(vo) are uniquely determined, and F(x) has on [F"l(uo,
F'l(vo)] a derivative f£(x) which has only a finite number of

discontinuities, is bounded above, and is bounded away from zero.

(4.2) TF(x) has a derivative f(x) which is bounded for all x, and
has only & finite number of discontinuities. Further, there ex-
ists a positive value D' such that for any value D in the
open interval (0, D'), the set of points {x : f(x) > D} is

an interval.

(k.3) 1If f[F'l(r)] is nct bounded away from zero &as r approaches
unity then either there is a value t(0<t <1l) such that the
quantity d f[F'l(r)]/dr is negative and non-increasing for
r > t, or the quantity d f[F'l(r)]/ dr approaches a finite ne-

gative limit as r approaches unity.

(4.4) 1If f[F'l(r)] is bounded away from zero as r approaches zero
then either there is a value t'(0<t'<1) such that the quantity

d f[F'l(r) 1/ar 1is positive and non-decreasing for r < t', or
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the quantity 4a f[F-l(r)/dr approaches a finite positive limit
as r approaches zero.

Note that (L4.2) implies (%.1). Also, the second part of (4.2) is
satisfied by every unimodal f£(x). Conditions (4.3) and (4.4) can be
verified by using the fact that 4 f[F'l(r)]/dr = d ldg f[F'l(r)]/dF'l(r).
Thus the condition (L4.3) says that if f£(x) goes to zero as x increases,
then there exists a finite y such that d log f(x)/dx is non-increasing
for x > y. The conditions (4.3), (k.4) are satisfied by all infinite
Polya frequency functions. The exponential, normal and Weibull distri-
butions are well-known examples.

Now we shall consider the question of stochastic convergence. Let
h(t) be a hounded non-negative function of t defined for 051:5_1.

For p in the interval 0<p<l, define Hn(p) as follows:

n=1
H (p) = (1/n) Y h(i/n)(Ui/Vi)p , o<p<l
1=1
(h.5)
n-1
H (p) = (1/n log n) 1§1 h(1/n)(U,/V,) p=1.

Then we have
Theorem 1. If F(x) = G(x) =x, (0< x< 1), thenas n increases,

Hn(p) converges stochastically to

-1
(np/n sin np) nZ h(i/n) 0<p< 1l
i=1
(k-6) n=1
(1/n) 221 h(i/n) p=1.

11



Proof:
and Zl""’zn- be two independent sets if
Ne
mutually independent random varisbles with cdf e . Let Rn = E: Wn,
n-l i=1

T, = 1);:1 Z . Then it is well known that (W,/R,...,W /R ) and

Let Wl, .o "wn--l 1

X

(Uysane,sU have the same Jjoint density. Similarly for
1 .

n-l)
(zl/Tn,...,zn_l/Rn) and (vl,...,vn_l). Also R is independent of
(Wl/Rn,...,Wn_l/Rn) and T is independent of (Zl/Tn,...,Zn_l/Tn).
Thus we need only consider the convergence of
n=1 _ D

(4.7) (1/n) 1z=:1 n(i/n) (T, W,/R 2,) 0<p<l.

Using the strong law of large numbers, and making some straight-
forward computations, we find that (Tn/Rn)p converges to unity w.p.l
for all p, 0<p< 1. Also, for 0<p< 3 , ve Find that

n=1 P

(4.8) (1/n) 121 n(1/n) (W,/2,)
converges to (4.6) w.p.1. For %‘5 p <1, the results in Gnedenko and
Kolmogorof [2] on the relative stabillity of a sum of positive random
variables with finite expectations show that (4.8) converges stochasti=-
cally to (4.6).

For the case p = 1, we must consider

n=1

(4.9) (1/n log n) 12__;1 h(i/n) (W,/2,) .
Again the convergence of (hf9) stochastically to (4.6) follows from
results in [2] on ssymptotic stability of sums of positive random
varisbles. The boundedness of h(t) is important in all of the above

convergence computations. This proves Theorem 1.
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Corollary 1. If F(x) = 6(x) = x (0<x<1), and f h(t)at exists
o

(in the Riemenn sense), a8 n increases, Hn(p) converges stochastically

to
1
(np/sin np) f h(t)at 0<p<l
c
(4.10)
1 ,
f h(t)at p=1.
o
Proof:
| 1
If J’ h(t)dt exists, then as n dincreases, (4.6) approaches (4.10).
o

This proves the corcllary.

Now suppose condition (L4.1) is satisfied and let Sn(p,u,v) be de-
fined by (2.3) with 0 < u <u<v<v < 1, where u, v, are given
in (4.1) Then we have

Theorem 2. As n increases, Sn(p,u,v) converges stochastically to

v
(k.11) (l/(v-u))l_t (gl (£)1/21FH(£)1)P at
Proof:
If Xj,) and Xj areboth in [Fl(w), FU(V)], snd Yi,) end ¥

are both in [G'l(u), G-l(v)], we can write

F(Ry,q) = F(x}) = £0,) (X}, - X)) , (X} <0, <Xj,))
(k.12)

6(¥},)) - &(¥y)

5 3(93)(1(' - 1), (Y3_<_ el <Y o).

J+l J="3+1
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Define 7&3 es IF(X&)- (J/n)| and A' as |G(Y5)_- (3/n)] . By the

J
Glivenko-Cantelli theorem, we know that for any positive B8, mg.x nl/ 2-6ki

converges stochastically to zero as n increases. Define &, as

J

%] - Fi(3/n)]. 1£ X} and F1(3/n) are both in the interval

[F (u), F1(v)), then since f(x) >A >0 on this interval (by (k.1)),
we have 5J < (kJ/A). Then if X!, X3+l’ F-l(,j/n) and F'l((J+l/n) are

all in the interval [F 1(u), F"X(v)], we have that l6,- Fl(y/m)| < 8+

6J+l + 1/nA, and we can write

x!

t 1y o -1 t [} [
(4.13) F(XJ_,_l) - F(x}) = £[F77(3/n)] (X},; - xJ) + 7J(XJ+1 - J)

where 7y = f(ed) - f[F'l(J/n)]. But because of the uniform continuity of
f(x) in [F'l(u), F-l(v)], the above bound for IOJ - F'l(j/n)l and the

Glivenko-Cantelll theorem, it is easily seen that max |7 il converges
nu< i<nv

stochastically to zero as n increases. Similarly we can show that

1 1 -1 t ! t L} [
(4.1k) G(¥y,;) = 6(¥)) = al6™(y/n) (¥}, - i) + 7j(¥], - 1))

where max |7:'[l converges stochastically to zero as n increases.
nu<i<nv

Denote F(X3.,) - F(X}) by W,(3 = 1,...,n-1), and G(Y3+l) - G(Yj)
(3 = 1,...,n-1) by Zy. Notice that (Wp,...,W ) end (Zy,...,2 )

are distributed as two independent sets of sample successive differences

from the uniform distribution on the unit interval. Using (4.13) and

(4.1%) we have

(4.15) Lo (aler/m /et a/m) 0P (ny/z0P . B (u )P
nu<i<nv nu< i< nv

s B (V)P ((ete) s[G’l(i/n)]/s(GJ')f[F‘l(i/n)l)P -1} .

m< i<nv
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Using the result of Corollary 1, we have that the left side of (h(lé)
when properly normalized convérgeé stochastiéﬁlly t§ (h.li). Let the
apﬁropriately normalized second term on the right sidé of (4.15) be re-
presented by §n(p,u,v). As n increases, the probability approaches

unity that ISn(p,u,v)l will be no greater than

s (puw,v) (( max  [p, PP+  max  [r3P[BP)/aRcP)
nu<i< nv nu<i< nv

vhere 0 <A< f(x) <B<w for Fi(u) <x<Fl(v), and 0 <C < glx)<D <=,

for G'l(u)ls x < ¢"}(v). Thus we have that |§n(p,u,v)|/sn(p,u,v) con-
verges stochastically to zero as n increases. But Sn(p,u,v) + §n(p,u,v)
converges stochastically to (4.11) as n increases. This proves Theorem
2.

It is clear that the same proof will show that under condition (L4.1),

Sé(p,u,v) (defined in Section 2) converges stochastically to

v
(L4.15) (l/(v-u))f (£(F1(4))/ale(£) )P at.
u

Thus, under condition (4.1), we obtain that as n increases the

statistic Sﬁ(p,u,v) Sn(p,u,v) converges stochastically to
v v
(5.16)  (1/n(v-u))? ( f (f[F'l(t)]/g[G'l(t)])pdt)(f (sl6™H(2) 1/2[F 2 (£)1)Pat).
u u

Now, assume that conditions (4.2) to (L4.U4) are satisfied. Let
Sn(p,B) be given by (2.2). Then we have
Theorem 3. If F(x) = G(Ax + B), then a8 n increases, Sn(p,a) con-

verges stochastically to (1/4)F .



We assume that either or both of the quantities 1lim £(x),
x$F1(0)
liml( ) £(x) 1s zero. Otherwise, Theorem 2 applies. For arbitrarily
F(1

chosen u', v, 0 <u <v < 1, we have

(4.19) 8,(p,8) = (veu) 8 (p,u,v) + b(n,p) Z(Ui/vi)p + ¥ (u/v)?

nl/ 2+6<1§_ . nvgic n--n]'/z"'5

where
sin wp/nnp 0<p<l

(4.20) b(n,p) =
1/n log n p=1l.

By Theorem 2, (v-u) Sn(p,u,v) converges stochastically to

v
(b.21) f (gl6™H(£) /2 IF" Y (£) )P 4t = (v-u) (1/A)% .

u
We shall now investigate z (Ui/v i)p » the treatment of
nvg i< anl/ 2+
nl/ 248 1< nv being entirely similar.

Since F(x) = G(Ax + B), we see that (Yl,...,Yn_l) has the same
distribution as (A%, + B,...,AY + B) where ¥ has the distribution
F(x). Letting the ordered ii be Y."L €0 L Yz!z » and the differences be
Vi =Y,0- Y (4=1,..., ne1), we have that ¥ (Ui/vi)P has the same
distribution as z (Ui/AVi )p « Thus we want to study the convergence of

t\P
2(u,/vy)

. Using condition (4.3) and the relation (4.12), we ob-
l/2+8
nv_s i< n-n

tain that §° (U:'_/Vi)p can be bounded above by
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(4.22) X I/M' (e(3])/2(xy, DPOP(RE, ) -P(XP))/ (R(ES,)-F(]))IP

nv< i<n-n i+l

If we can find & bound (say B) for f(Yi)/f(Xi+1), then we would be

through, for (4.22) would then be bounded by
(h23) L LR, I/(RED - (REP

By Corollary 1, (4.23) when normelized to agree with Sn(p,b) cone

verges stochastically to (1-v)B®. Thus, by choosing v* (say) sufficiently

large, we will have that
P (b(n,p) T (Uy/Vy)P < e)
nv<i< n-nl/e'{h6 -
approaches unity as n increases for each v such that v¥ < v <1.
1 1 1 1
To bound f(Yi)/f(Xi+l), we note that if Yi > Xi,, » then unity

serves a5 & bound. Thus we must f£ind a bound (B') for this ratio when

Yi <X}, - We can thentake B =1+ B'. Letting t, = F(Yi) and

t, = F(Xiﬂ) (momentarily suppressing i), we have t, <t,, and
~ -1 -1

(4.24) (2(T)/2(x],, ) = (FIF (6 )Y 2[F77 (1)),

By the mean value theorem, and the fact that f[F'l(l)] = 0, we have

it

£1F1(5,)) (1-tl)(-df[F‘l(t)]/at)t:e1 t, £6, <1

(k4.25)
f[F’l(ta)]

-1
(1-t,)(-af[F (t)]/clt)t=92 tps621 .

From condition (4.3), we see that there is a value vy such that if

t

1» ty both exceed v., then either (clf[]i‘-:l'(t)]/cl‘l:.)t’:e‘j (3=1,2) 1is

7



sufficiently near & limit I, in which case the ratio (4.24) is bounded
by 2(1-t,)/(1-t,), or ar[F"1(t)])/at 1s a decreasing function of t for
t 2 t,. In the latter case, by lemma 1 below, we have ('1-tl)/(1~t2) as

e bound for the ratio (%.24). Clearly, if v > v,, thenas n increases,

l)

s P(X )Y > v

1+1 l,nvgifn]

P {F(Y:'L) > vy

approaches unity. Thus, we need only to find & bound for

[lnF(,?i)]/[l-F(xi o)1 (v 5 i< n-nl/ 2*,5,)'. Rewriting this last ratioc as

(_r_x;_i) ol/2-8 . 1/2-8 (% - F(E))

(n-i—l) /-8, 1/2-8 «%;) v F(X], )

using the Glivenko-Cantelli Theorem (see Theorem 2), and noting that

2+
[(n-1)/ nl/ 8] is greater than unity, we have that

P {([l'F(Yi)]/[l'F(xi»,l)] <2, nv<ic< n_n1/2+a]

approaches unity as n increases.
Putting together all of the above pieces, and noting that we can

choose u,v so that (v-u) is arbitraril;” close to unity, we see that
P (s (p,8) - (1/8)F | <€)

approaches unity as n 1increases. Thisz proves Theorem 3.
Lemma 1. Suppose f(x) is continuous and differentiable on the interval
(a,b), with £'(x) < O and decreasing. lLet %) <x, bein (a,b). By

the mean value theorenm,

18




(4.26) £(xy) = £(b) + (x, - v) £'(6,) x, <6 <P, 1=12.
Then 6, 2 6, -
Proof:

First note that

(1.27) £x,) = £(x) = (x5 - x;) (£1(85)) % £05 <%,

and that 93 <e . If 91 < 95 s then

1

£(x) = £(b) + (b-x))(-£'6;)) < £(b) + (b-x;)(-£(85)) =

(4.28)
- £(5) + (bexy)(=£1(8,)) + (xg = %)) (-£(65)) -
Using (4.27) in (4.28), and noting (4.26) we have 65 > 9, which
is impossible. Writing f(xl) = f(ka) + (f(xl) -f(xe)), then using
(4.26) to represent f(xa) and (4.27) to represent (f(xl) - f(xa)) and
subtracting the result from the representation of f(xl) given by

(4.26), we obtain

(4.29) 0= (xl -b) f'(el) - (x2 -b) f'(ae) + (xy = xl)f'(e3)
= (x, = D)(£1(6)) - £7(8y)) + (x5 = %, )(£'(65) - £'(6,))
Since 93‘5 8, » f'(el) -f'(ee) 1s positive, or 6, < 6,. This proves

Lemma 1.

In the same way that we proved Theorem 2, we can show that under
the same conditions, Sé(p,b) converges stochastically to AP. Putting
together these results, we have that Sn(p,ﬁ) Sa(p,ﬁ) converges stochas-
tically to unity as n increases, when F(x) = G(Ax + B), and conditions

(4.2) to (4.4) are valid.
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We shall now state a Lemma due to Weiss [3], which will be useful
below.
Lemma 2. If F(x) and G(x) are two distribution functions and u,
v (0 €u <v <1) are two given numbers, suppose F'l(u), F-l(v), G.l'(u),
G'l(v) are all uniquely determined. Also suppose that F(x) has a
derivative f(x) between Fl(u) and F'l(v), end G(x) has a deriva-
tive g(x) between G-l(u) and G'l(v). Then a sufficient condition
that f[F'J'(r)] = kg[G'l(r)] for almost all r in [u,v] (where k 1is
a positive constant) is that there are two comstants C, D {C > 0), such
that F(Cx + D) = G(x) for all x in the interval [G‘l(u), G‘l(v)].
If in addition, f£(x) > O between F'l(u) and F'l(v) , the condition
1s necessary as well as sufficient.

We omit the proof since it is contained in [3]. Note that Weiss
omitted the condition f£(x) > 0 between F-l(u) and F'l(v) and without
this condition the statement is incorrect. A simple counter-example is

given by the following pair of distributions:

( G(x) =0 x<0

= 2x(1l-x) 0<x<1/2

= 1-2x(1-x) 1/2<x<1
(4.30) < = 1 l1<x
F(x) = 0 x<0

= Lx(l-2x) 0<x<1/4

= 1/2 /b <x <3h

= 1-4(1-x)(2x-1) FH4<x<1

\ =1 1<x

Here (f[F‘l(r)]/g[G'l(r)]) =2 for all r in [0,1], except

r = 1/2, but clearly G(x) # F(Cx + D) for any pair C, D (C > 0).

20
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Now we shall return to the problem of examining Sé(p,s) Sn(p,S)

when conditions (L4.2) to (4.%) hold but TF(x) % G(Ax + B). We have

Theorem 4. If F(x) #= G(Ax + B) (A > 0), ani conditions (4.2) to (L4.4)

obtain, then as n increases, for every € > 0 ,

1
(k.31) P (8](p,8) 5 (p,8) + € > [f (£17"(8) Ygle™ (5) DT at]-
o

1
'[f (gl () 1/£F (6 ))? at])
O

approaches unity.
Proof:
Let Sn(p,s) and Sé(p,&) be represented as in (4.19). Then

note that S;(p,a) Sn(p,a) can be written as
(4.32) (V"u)e gg(P,u)V) Sn(P’u:V) + B(n,p,u,v)

vhere u,v (0 < u < v<l) are arbitrary and B(n,p,u,v) is strictly
positive. By (4.17) we have that (v-u)2 Sé(p,u,v) Sn(p,u,v) converges
stochastically to

v v

(4.33) f h(t) dtf (1/n(t)) at
u b
where
(4.38)  n(s) = (£0F~L(8) Vele ™ (£) )P .

But by the Lebesgue Monotone Convergence theorem, we know that by
meking (v-u) close to unity, we can, for any positive ¢, make (4.33)

greater than

21




1 1
h(t) at f (1/n(t))at -e .
Q

|

)
This completes the proof of Theorem 4,

Assuming the conditions (4.2) to (4.4) we can now prove the consise
tency of the test which rejects H_ when Sé(p,&) Sn(p,a) is "too
large." By Lemma 2, we have that when H  is not true, h(t) (given by
4,34) is not a constant on [0,1]. It can then be shown that

1 1
(4.%6) j’h(t)dtf (1/n(t))at

o o]

is greater than unity. Thus using Theorem 4, we have that
(4.37) P (8!(p,8) S (p,8) > 1).

approaches unity as n increases. This establishes consistency when
conditions (4.2) to (4.U) are satisfied. It is easlly seen that condi-
tions (4.3) and (L4.4) were not essential to the argument. Thus even if
only condition (L4.2) holds, the test will be consistent. Il condition
(4.2) is violated, we must allow distributions such as those given in
(4.30) and for such distributions it can not be shown that the probability

(4.37) epproaches unity as n increases.
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5. Remarks About Large Sample Distributions.

We shall give a heurlstic argument to indicate why for some values
of p, Sé(p,u,v) and Sn(p,u,v) might have a bivariate normal limiting
distribution, whereas for other values of p this distribution is not
possible. Similar statements can be made about S;(p,ﬁ) and Sn(p,b).
From the proof of Theorem 2, we see that Sé(p,u,v) and Sn(p,u,v) have
approximately the same Jjoint distribution as

nv
b(n,p) ) ((F(a/n) /le™Ha/m) NP (w,/2,)P  and
i=nv

(5.1)

wlap) 3 (el Ma/m) et (/P (2P

i=nu

where (Wl""’wn-l) and (Zl,...,Zn_l) have the same joint distribu.-
tions as the corresponding quantities in Theorem 2, and b(n,p) is

given by (4.20).

From the proof of Theorem 1, we see that the quantities in (5.1)

have approximately the same Joint distribution as

t(n,p) gf (n(1/n))P (Xr/Yi)p and
i=nu
(5.2)
nv -
b(n,p) T (/n(1/n)P (2/%)7
i=nu
where
(5.3) n(4/n) = £1F"1(1/n))/gle™ (1/n)]
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and (21,..., %) &re independent random variables with c.d.f e

and (Yl, ceey ?n)' are independent rendom variables with c.d.f e .

Each of the quantities in (5.2) is a linear combination of indepen-
dent random variables, and when p < 1/2, the first two moments of these
variables are finite. Thus, the bivariate central limit theorem applies
and the expressions in (5.2) have a limiting bivariate normal distribue-
tion. Thus, for p < 1/2, it is reasonable to suppose that Sé(p,u,v)
and Sn(p,u,v) have a limiting bivariate normal distribution. When
p = 1/2, all moments of (ii/Yi) up to the secondi exist, and each temm
in (5.2) can be shown to have a limiting normal distribution. Similarly,
a bivariate limiting normal distribution for the terms in {5.2) can be
obtained from a generalization of the one-dimensional result.

When p > 1/2, not all moments of (ii/?i)p of order less then
two exist. If one of the expressions in (5.2) had a limiting normal
distribution, then the expression

nv
(5.4) b(n,p) ¥ (R,/%,)P

i=nu
where h(i/n) ie taken to be identically unity would have a normal
limiting distribution. However, (5.4) is a sum of independent,
ldentically distributed random variables, and from Cramé;[ll, Theorem
23, we £ind that a necessary condition that such a sum have a limiting
normal distribution is the existance of all moments of order less than
two. Thus, for p > 1/2, it 1s reasonable to say that in general

Sg(p,u,v) and Sn(p,u,v) will not have & limiting bivariate normal

distribution. What sort of limiting distribution these quantities do -
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have when p > 1/2, is completely open.
Thus from the viewpoint of being able to say something about
asymptotic power, there is some advantage to using the tests with

p <1/2 rather than those with p > 1/2.
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6. TFurther Problems.

Since each member of the family Sn(p,u,v) (for u,v fixed) is &
consistent estimator of (1/A), it follows that any linear combination
of & Ffinite number of these estimators (with the weighting factors
totaling unity) will also be a consistent estimator of (1/A). Similarly,
one would guess that if H(p) is a probability distribution on [0,1] then

1
JRCEIRE®
0

should also be a consistent estimater of (1/A). It might be worth
congidering whether there is some H(p) wvhich in some sense gives &
"better" estimator than any individual Sn(p,u,v). Similar remarks
apply to Sn(p,a). Tn this case, the limiting behavior of 'Sn(p,b)
as B — 0 would also be of interest.

It is possible to modify the two-sample problem treated herein so
that it becomes & two population test of fit. Namely, suppose that
H(x) is a given distribution function. Then under Ho we have
F(x) = G(Ax + B) = H(Cx + D) where A, B, C, D are real but un-
specified constants (A > 0, C > 0). The question here is not whether
F(x) and G(x) are the same "type" of distribution but rather whether
they are both the same specific type. This modified problem can be
solved by using the statistic 2 proposed by Weiss [3]. Let zn(x)

be defined for fixed u, v (0 Su<v<1) by
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o 2 I, 1)
(6.1) Zn(X) - nu < J<nv

( Z h[H'l(J/n)](xJﬂ- xd))a

nu<j<nv

and let Zn(Y) be defined similarly. Then from the results of [3], it
is easily seen that under condition (4.1), both of the following tests
are consistent

1) Reject H, if Zn(x) Zn(Y) is "too large", or

2) ReJject H o if zn(x) +zn(Y) is "too large”.
Which of these two tests is better depends on their limiting power,

which in turn depends on the unknown limiting distributions of the

proposed statistics.
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Sacramento Alr Materlel Area

Attn: Quality Control Office, SMQ
McClellan AF B, Callfornia

Command

San Bemaldlno Air Materle! Area
Altn: Quality Control Office, SBQ

Norton AFB, California

G
San Bemardino Air Materlel Area
Attn: Quality Control Division
Dlm:lome of Procurament
nd Production
Norton AF B Callfornia

Commander
San Bernardino Alr Materiel Area
Attn: Materiel Quality Division
Directorate of Supply and

Services
Norton AFB, Caiifornia

Commander
Warner Robins Alr Materiel Area
Attni: Assislant for Quality
Directorate of Maintenance
Engineering
Robins AFB Georgla

Commander

Warner Robins Alr Materie! Area
Atin: Quality Cantrol Office, WRQ

Robins AFB, Z«grala

Commarder
Warner Robins Alr Materlel Area
Attn: Quality Control Division
Directorate of Procurement
& Production
Robins AFB, Georgla

Commarder
Warrter Robins Alr Maverizi Area
Attn: Matertel Ouallgy Dlvlslon
Mrectcrate »¢ Supply and

Services
Robins AFB, Gacegla

Commander
Oklahoma City Alr Materiel Area
Attn: Assistant for Quality
Directorate of Maintenance
Englneering
Tinker Air Force Base
Oklahoma City, Oklahoma

Commander
Oklahoma City Alr Materle! Arca
Attn: Malevlel Qual It lg Divisien
Directorate of Supply and
Services
Tinker Alr Force Base
Cklahoma Clty, Oklahoma

Commander
Oklahoma Cltr Alr Materiel Area
Attn: Qua Ity Contic! Divislon
Directorate of Procurement
al oduction
Tinkee Alr Force Base
Oklahoma City, Oklahoma

o
-

Oklahoma Clt Alr Materiel Area
Altn; Qi fu Cantrol Oifices, 0CQ
Tinker AFB, Oklahoma

Commander
Rome Air Force Depot
Attn: Asslsunl for Quality
Dlrectmte of Maintenance

rln
Griffiss AFe New

Commander
Rome Air Force D
Attn: Dlm;tou'la of Supply
es

Griffiss AFB, New York

Commander

Alr Materlel Force, European Area
Attn: Quality Control Office

APQ 633, New York, New York

Commander

AerTechnlcaJ In!elll?enca Canter
Lt

Wright-Patterson AFB, Ohio

Commander
Air Materiel Command

Attn: Quality Control Olflco, Mcaq
Wright-Pattersen AFB, Ohi

Commandas
Middietown Air Materie! Area
Attn: Assistant for Quality
Dlucmau of Maintenance
1_ neering
Olmsted Alr Force Base
Middietown, Pennsylvania

Commander

Middletown Alr Materlel Area

Oimsted Air Force Base

Middletown, Pensylvania
Atn: MAPQC

Commander
Middletown Alr Materie! Area
Attn: Mamlnl Qlll"g Division
Directorate of Supp
and Service
Olmsted Alr Fuce Base
Middietown, Pennsylvania

Commander
Middletown Alr Materlel Area
ttn: Quality Control Division
Directorate of Procurement
& Production
Olmsted Air Force Base
Middletown, Pennsylvania

Commander
Middlalown Alr Matarie! Arsa
Attn: Quality Control Office, MAQ
Olmsted Alr Force Base
Middletown, Pennsylvanla

Commander
Memphis Alr Force Depot
Maliory Alr Force Station
Attn: Directorate of Supply
and Services
3300 Jackson Avenue
Memphis 1, Tennessce

Commander
Memphis Ale Fovu Dopok
Mallory Alr Force Sta

Atta; lelly Cowol Division
Elllel:lmlte of Malntenance

ng
3300 Jackson Avenue
Memphis 1, Tennessee

Commander
San Antonlo Afr Matertel Arex

Attn: Quality Control Office, SBQ
Norton AF 8, Californla
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Commander
San Antonio Air Materiel Area
Attn: Asslistant or Quality
Directorate of Mzintenance
Engl: ering
Kelly Air For : Base, Texas

Commander .,
San Antonlo Alr Matertel Area
Attn: Materiel Quality Dlvision
Directorate of Supply
and_Services
Ketly AFB, Texas

Commander
San Antonio Air Materlel Area
Attn: Quality Control Division
Directorate of Procurement
and_Production
Kelly AFB, Texas

Commander
San Antanio Air Materlel Area

Attn Quality Control Office, SAQ
Kelly AFB, Texas

Commander
San Antonio Air Materlel Area
Attn: Quality Control Division
Directorate Special Weapons
Kelly AFB, Texas

Commander
Ogden Alr Materlel Area
Auwn: Assistant for Quality
Directorate of Malntenance

Engineering
Hill AFB, Utah
Commander

Ogden Alr Materle! Area
Attn: Materlel Quality Division
Directorate of Supply
and Services
Hill AFB, Utah

Commander
Ogden Alr Materlel Area
A'tns Quality Control Division
Directorata of Procurement
and Production
HHI AFB, Utah

Commander
Ogden Alr Materiel Area

Attn: Qualily Contro! Office, 00Q
Hill AF8, Utah

David Taylor Mode! Basin
Applied Mathematics Lab. (Code 820)
Viashkington 7,0, C,

Attn: Or. Jullus Lisblein

Detruit Ale Procurament Dist .

Attn: Quality Contes| DI, MOHDQ
W. Warren Avanue & Lonyo Blvd.
Detrolt 32, Michigan

Atts: MOHDQ

Director
National Securlty Agency
Attn: REMP-1

Fort George G Meade
land

Director, Development Bivislo
Flald Conmand "

Armed Forces Speclal Weapons Project
Albugueraue, New Maxice

Eastern Contract Management Reglon
Attn: Directorate, auallty Controt
Oimstcd AF 8, Pennsylvania

Graup

h Division
New York University
New York 53, New York

Englneering Statistics Ualt

Chemica! Coeps Engineering Agency

Amx Chemical Center, Maryland
ttn: Mr. T. M. Vining, Chief

Federal Telephone and Radio Co.
100 Kingsland Road
Clifton, New Jersey

Fleld Inspection Section

DES Bivislon

Armed Services Medical Procurement
gency

84 Sands Street

Brooklyn 1, New York

Mrs, Dorothy Gllford , Head

Logistics and Mathematical Statistics Beanch

e 436
Office of Naval Research
Washington 25, D. C.

Military Clothing & Textile Supply Agency
Philadelphta Quartermaster Center

. S, Am
2800 So.yEOQ.h Street
Philadelphia 1, P

4,
Atto: Policy Office , Technical Division

Headquarters
San Bernardino Alr Materlel Area
U Air Force

Norton AFB, Calfforni.

a .
Attn: Chlef, Plannlng & Control Offices

Headquarters

#. S Army Signal Equipment
Support Agencg

Fort Monmouth, New Jersey
At SIGFMES -PFE

Headquarters
AMCqBalllsllc Missies Center, USAF
Air Force Unit Post Otfice
Atts: E, J, Lancaster, Deputy
for Quality Assurance
Los Angeles 45, California

Industrial Division
gfg:’e', Chlelf::‘f);dnance
epartment of the Army
Washington 25, 0. C.
Attn: Mr, Seymour Lorber

Inspection and Quality Control Div,
Olﬁ(;e&,dssl. Secretary of Defense

Washington 25, 0. C.
Attn: Mr. Irving B. Altman

Inspection and Quality Control Div.
0"}“, Asst, Secretary of Defense

Washington 25, D, C,
Attnt Mr. John J. Rlordan

Library

Institute for Defense Analysis
Communlcaticns Research Division
Von Neumann Hall

Princeton, New Jersey

Librarian

Numerical Analysis Research
Unlversity of California

Los Angeles 24, California

Legistics Research Division
Altn, MCFR
Wright-Patterson AFB, Ohto

1

Logistics Research Project
George Washington University
707 22nd Street, N. W
Washinglon 7, O, €.

Milwaukee Air Procurement Dist.
Attn: Quatity Control Div,

770 N. Plankinton Avenue

Milwaukee 3, Wisconsin

Military Madical Supply Agency
84 Sands Strect
Brookiyn 1, New York
Attn: In-Store Quality Control
Materlel Inspection Beanch

N A C A,
1512 H, Street, N. W.
Washington 25, D. C.

Ann: Div. of Res. Information

Newark Alr Procurement Dist.
Attn: Quaiity Control Division

218 Market Street

Newark, Now Jersey

New York Air Procurement Dist.
Attn: Quality Control Div.

111 East 16th Street

New York 3, New York

Off;&eﬁ,éssl. Secretary of Dafense

Room 3£106%, The Pentagon
Washington 25, D, C,
Attn: Technical Libeary

Operations Analysis Office
Headquarters, Pacific Alr Forces
U. §. Al Force, APO/953
Atin: C. E. fhornpson
Senlor Analyst
San Francisca, California

Office, Chief of Englneers
Department of the Army
Washington 25, 0. C.

ttn: Procurement Division

Military Supply

Office of Operatlon Analysis
1) ¢

perations
Eigin AFB, Florlda

Oifice of Technical Services
Departmial of Commerce
Washington 25, D. C.

Office of the Chlef
D A

, Y. 3. Army
Atlington Hall Station
Atlington, Virginia
Atin: Dr. I. R, Hershaer, Jr.

Officer in Charge
U. S. Navy Central Torpedo Office
Newport, Rhode Istand

Attn: Mr. G, B, Habicht

Ordnance Corps

Industrial Engineering Div.
Diamond Ordnance Fuze Lab,
Washington 2%, D, C.

Ordnance Misston

White Sands Proving Ground

Las Cruses, New Mexico
Attn: Mr Paul G. Cox

Philadelphia Atr Procurement Digt.
Attn: Quality Control Division

1411 Walnut Street

Phlladelphia 2, Pennsylvania
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Physical Research Bunch
Evans Slﬂnal Lab .,
Belmar,

Attn: Mr. Joseph Welnstein

The RANG Cofpomlon

1700 Maln Stre|

Santa Monlca, CaI \fornia
Attn: Library

Report LIbr: .
Unlvuslly nl Californla
Los Alamos Sclentific Lab.

Los Alamns, New Mexico

Rouket Developioent Group
Reistone Arsenal
Huntsvill -, Alabama

Attn: t. E. 1., Bombara

San Franc|sco Air Procurement Dist.
Attn; Quality Control Dlvlslon

Qakland Amy Terminal,

West Grand & Maritime

Qakland 14, Callfornia

Scranton Or.mance Plant
156 Cedxr Avenue
Scranton, Fennsylvania
Attn: Mr. Carl D, Larsen
Culef inspector

Special Project Offlce
SP2016
Department of ihs ‘l\vy
W1sh|nglon 25 C.

Atte . H. Wemqmlen

Standards Branch
P..curement Division
DCS Loglstics, L' S Amy
War “lrgton 25,
Attn: Mr. QIIas Wllllams, LR

Statistical Lab vy
Unlversity of Coiiornla
Berkeley 4, California

Technical Information Oificer
Naval Rescarch Laborawf,
Washingtorn 25, D

Tachnical Operatlan, inc,

and
Hq. Con!lnen!.al l\mvy Command
Fort Monroe, Virainia

U. S. Naval Avionics Facillly
Indlanapolls 18, Indlana
Atin; n.-bra’y

U, S. Navei Fugineering Experiment
Station.

Anapolls , Maryland
hedn 'Mr."z. R. DelPriare

S. Naval lnsgector of Ordnance
400 5. Baiger
Mishawaka, Indiana

U, S. Naval Inspector of Ordnance
Eastman Kodak ompany

Rochester 14, New York

U, S, Naval Inspector of Ordnance
Statistics Department
Naval Gun Fact
Washington, D. C.

Attn: C. D. Hock

U.S.N. 0 T S,

Pasadena A

2202 €E, Foalhlll Bivd.

Pnsadenaa California
Attn: Mr, S, Gaspar

Western Contract Management Region
Attn: Directorate, Gual It{ Contro!
Mira Loma AF Station, Califernia

Dr. Adam Abruzz}

Dept . of Economics and Enzflneerlng
Stavens Instiiute of Technology
Yoboken, New Jersey

Mr, Willtam E, Gilbert, Chiel
Mathematical Statistles Branch
Atomle Eneriy Commission
Washington

meessor T. W. Anders
rarlment of Mathemauul Statistics
bla University
New York 27, New York

Professor Fred C. Andrews
Mathematles Department
Unlversity of Oregon
Eugene, Oregon

Ur, Max Astrachan
Department of Loglstic
The RAND Corporation
1700 Main Sireet

Santa Monica, Californi:

Professor Robert Bechhofer

Slbley School of Mech. Engineering
Comell Unlversity

Ithaca, New York

Dr. R. E. Beckwith
Aeronutronic

oad
Newport Beach, California

Professor J. N. Berretionl
Western Reserve Un'ersity
Cleveland, Ohio

Mr. Carlton M. Beyer

Office of Guided Missiles

wtce of Asst, Secretary of Defense
(R&E)

V¥ushington, D. C.

meessor 2. Birnbaui

*"soratory of Staustlcal Reseamh
setpartment of Mathematics
Unlversit ry of Washington
Seattle 5, Washington

Professor Russel! Bradt
Department of Malhematics
University of Kansas
Lawrence, Kansas

Professor [rving W. Burr
Department of Mathematics
Purduc Unlversity
Lafayelle, Indlana

Mr. G. Burrows
Knolls Atomic Power Lab.
Schencctady, New York

Captaln A. E. Chapman
AF&‘R "

Boelng Aircraft Corporation
Seattle, Washington

Or. A, Charn

The thhnolo lal Institate
Northwestern tinlversity
Evanston, llinols

Mr. W, H. (:Ia!wwthi!l
Bettls Plan, Westinghouse
Electric Corporation

Box 1468
Pittsburgh 30, Pennsylvania

Professor Paul Cllfford
New Jersey State Teachers College
Montclalre, New Jersey

Professor W, G. Cochran
Department of Statistics
Harvard University
Cambridge, Massachusetts

Professor C, C, Cockerham
Institute of Statistics

State College Section

North Carolina State College
Raleigh, North Carolina

Professor Edward P. Coleman
Engineering Department
Universi! nf California

Los Angeles 24, Callfornla

Dr. Louis Court

Division 17

National Bureau of Standards
Washingten 25, D. C.

Miss Gertrude M. Cox
Institute of Statistics

North Carol ina State College
Raleigh, North Carolina

Dr .leseph Dal
Census Eureau
Washlnglon 25,

Professor Cyrus Derman
rartment of Industrial Engineering
mbia Unlveulty
New York 27, New York

Mr. H. F, Dodge
Rutgers IJnlvml
New Brunswick, h’m Jersey

Or. Francis Dresch
Stanford Rescarch Institute
333 Ravenswood Avenue
Menlo Park, California

Professor Acheson J, Duncan
Department of industrial Engineering
Johns Hopkins University

Baltimore 18, Maryland

Professor J" Dwass
Department of Mathematics
Northwestern University
Evanston, [llinots

Professor D. A. S . Fraser
D’z‘ ‘r’t:unt of Mathematics
Unlversity of Toronte
Toronto 5, Canada

Contract None 225(52)
May 1961



Mr. Bemnard P. Goldsmith
Associate Professor
Northwestern University
Huntlrgton Avenue

Boston 15, Massachusetts

Prolessor Leo A. Goodman
Statistical Research Center
University of Chicago
Chicago 37, lilinols

Mr. Leon Gilford
gpﬁmllons Research Inc.
Sllver Swln;s Mmland
Or. J. Greemwood
Dluctonu of Inull Igence

orce
Washlngton 25, D.C.

Professor Frank M. Gryna, Jr.
Unlversity Coliege

Rutgers nlversltﬂ

New Brunswick, New Jersey

Dr. Donald Guthrle
Stanford Research Institute
333 Ravenswood Avenve
Menlo Park, California

Dr. Theodore E. Harris
The RAND Corporation
1700 Main Street
Santa Monlca, Cailfornia

Leon H.
Deoamnent of Mathematlcs
New York Unlvml
New York 3, New

Professor W. Hirsch

Institute of Mathematical Scilences
New York Universit

New York 3, New York

Dr. Paul G.

Department ol Mllhemllh.i
Umvenily of California
Los Angeles 24, Californla

Professor Harold Hotalling
Assoclate Director

Institute of Statistics
Univarsity of North Carolina
Chapel Hilt, North Carolina

Professor L. Hurwicz

$chool of Businass Administration
Univarsity of Minnesota
Minneagolis, Minnesota

Mr. Rudolf Husser

Visiting Research Mathematiclans
Numereical Analysis Research
Unliversity of California

Los Angeles 24, Callfornla

Or. James R. Jackson

Management Sciences Research Project

65 Admir- mmlon Bulld ng
University of Culifom
Los Angeles 24, c:IMnrnl

R'. w, c.DJuob .

gronomy Depatment

Unlvml? of 1llinols
, filinols

vl

Professor W. D. Jones
Department of Su‘lst!cs
Michigan Siste University
East Lansing, Michigan

.
Qulmy t:onuol Dl{ll len
General Smlcn Administration
Room 6316 e%on 3 Building
Wuhlmton

Professor Oscar Kempthome
Statistics Laboratory

owa State College

Ames , lowa

Professor Sofomon Kullback
Deportment of Statistics
Georuye Washington Unlvmlly
Washington 7, D. C.

. Carl F. Kossae

:umtm and Omtlom Research
Research Genter - IBM

P. 0. Box 218, Lanb Estate
Yorktown Hclghts, New York

on
1700 Main Street
Santa Monlca, Californla

Dr. E. L. LvCl:ru, Chief
Blometrical Service

Agrlculhnl Rc“m:h Sewvice, USDA

Beltsvilie, Maryland

Professor Sebastian B, Littauer
411 Engineering Building
Cotumbia Unlversity

New York 27, New York

Dr. Eugene Lukacs
Department of Mathematics
Catholic Unlvmlly
Washington 17,

Dr. Robert Lundegard
Loglstics and Mathematical
Statistics Branch
Office of Naval Research
Washington 25, .

Frofessor Frank Massey
Schoal of Public Health
University of Callfornia
Los Angeles 24, California

Professor G W. McElral

Department of Indusulll Emlm«lng
University of Minnes
Mirneapolis 14, Mlmmou

Dr. Paul Meyer

Department of Mathematics
Washington State University
Pullman, Washington

Dean Paust E. Mohn
School of Engineering
University of Buffalo
Butfale, New York

B. Murphy
Il ol sphone Labomwlos inc.
463 West Streel
New York 14, chka

D. £. Newpham
Chief, Industrial Engineering Division

Compuollur
% San Bernardino Alr Materle!

Nmon Alv Force Base, Callfemia

Professor J, Neyman
Department of Statistics
University of Callforla
Berkeley 4, California

Mr, Monroe Norden
Research Dlvision
College of Englneering
New nlversity
New York 33, New York

Mr, Fred Okano

om Ae
1520 YHY Slreet
Washington 25, 6

Professor E. G. Olds
Department of Mathematics
Carnegle Institute of Technology
Pittsburgh 13, Pennsylvania

Professor £. R. Ott
Department of Mathematics
Rulgers Univers lﬁ

New Brumswick, New Jersey

Mr. Cyrll Peckham
Project Giobe

J]
Unlvmll&ol Dayten
Dayton, Ohlo

. Richard Post
Department of Mathematics
an Josc State Collage
an Jose, California

Professor P. H. Randolph

Purdue Univers

De| nt of lnlmmal Englneering
Lafayetie, Indiana

Professor George J Resnikoff
Department of Industrial Englneering
ilHnols Institute of Technology
Chicago 16, liitnols

Dr. Paul R. Rider

Chief Statisticlan

Aeronautical Research Lab., WADC
Wright-Patterson AF B, Ohio

Professor Herbert Robbins
Mathematical Statistics Dopulment
Columbia University

New York 27, New York

Dr. G. Roml
3'51*‘:“',\. Realoalgve
Pacific Pallsades, California

. Hary Rosenblat!
Smlmut Rcuuch Olviston
au of Census
Washington 25, 0. C.

Peofessor Murmay Rosenblatt
Dcpuuumnl of Mathematics
Pmmrm, Rh?da island
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Professor Herman Rubin
Department of Statistics
Michlgan State Unlversity
East Lansing, Michigan

Frofessor Norman Rudy
Statistics Department
Sacramento State College
Sacramento, California

Miss Marlon M. Sandomire

5. Department of Agriculture
Westem Regional Laboratory
Biometrical Services
Albany 10, California

Professor |. Richard Savage
Schoo! of Business Administration
University of Minnesota
Minneapolis, Minnesota

Professor L. J, Savage
Mathematics Department
Unlversity of Michigan
Ann Arber, Michigan

Professor Hemz Scheffd
Department of Statlstics
University of Californla
Berkeiey 4, Californla

Professor Robert Schialfer

Graduate Schoal of Business
Administration

Harvard Univers ity

Boston 63, Masuchuulls

Professor Szymnur Sherman
Department of Malhematics
Wayne State University
Datrolt 2, Michigan

Mr. Walter Shewhart
Bell Talephone Laboratorles, Inc.
Murtay Hill, New Jersey

Dr. Rosedith S itgreaves
Teachers College
Columbla Unlversity
New York 27, New Yotk

Dr. Milton Sobel
Statistics Depariment
University of Minnesota
Minneapolis, Minnesota

Professor Frank Spitzer
Department of Mathomatics
Llnlveulty ol Mlnnuou

Mr. Arthur Ste
Comell Amnumal tab., Inc.

Bumlo 21, New York

Professor W. Allen Wallis
School of Business
Unlversity of Chicago
Chicago 37, illinols

Dr. Irving Welss
The Mitre Corporation
Bedford, Massachusetts

Captain Burton L. Weller
AFPR Office

Martin Aircraft Corporation
Denver, Colorado

vil

Professor Mason Wescott
Editor, Indusisial Quality Control
Rutgers Unlvenll‘

New Brunswick, New Jersey

-PrMessorS s . Wilks

Princeton Unlvmlly
Princeton, New Jersey

Professor J, Wolfowltz
Depariment of Mathematics
Comell University

Ithaca, New York

Ur. Max A. Woodbury
Deramvwnt of Mathematics
College of Engineering
New York University

New York 53, New York

Distribution via ONR London

Commanding Gfficer
Branch Oﬂlcn

Navy No. 100

Fleel Post Olilce
New York, New York

Dr. Wiliiam R. Buckland
22 Hyder Sum
LondonS. W, 1
Eqgland

Professor Georges Darmois
Director, [nstitute de Sulmlqw
Unlvmu ol Parly

11 Rue Plerre Curle

Paris 5, France

Professor R, Forlet
Iastitit Heorl Polncare
Patls, Frunce

Dr. Geoffrey Cee

’ leom:y Grovgw
tatiay, Cheadle
Cheshire, England

. Hatd
Feresove) 83
Virum,

Dr. H. C, Hamaker
Philips Research Laboratories
Eidenhoven, Netherlands

Mr. 1. D. Hili
-;llallll‘!'lyul Asdvlwy Unit
Minlstry of Su;
ondon W, 1 pEnqlnm!

Professor M. G. Kendall
London Scheol of Economics
Lendon, England

Professor A, Walther
Technlsche Hochschule
Darmstadt, Cermany

Qther Forelgn Addresses

Professor Maurjce K. Beltz
Unlversity of Melbourne
Catlton N,

Victorla, Austraiia

Prolessor Tosio Kitagawa
Mathematical Institule
Facully of Sclerce
Kyusyu Unlvmlly
Fukuoka,

Kenlchl Koyanagl
Managing Director
Unilon of Japaness Scientists

& Englneers
2, L-thome, Cyobash]
Chus-ky, Tokye, Japan

Dr. Lal Verman

Director

Indlan Slmum Insitute
New Delhl, India

Professor P. C. Mahalanobis
ndian Slatistical Institute
203 Bamackpore Trunk R
Calcutta 35, tndia

N. T. Mathew, SRC Unit
IMll Suumul Institute

8 King
N Dclhlmll
Professor !mm MmMI
H Minamimal

Yo
Sualnimi-ku, To&yo, Japan

R. Q. Naasimhan

SRC Unit Calewita

Indian Statistieal Innuuu
tanade Cas|

cm.n['. 1, lndll

B
&=

. U, Shourt
n orle

L
g::lml Productivily Councli
New Ihl Indin

P. V. Sivaeamkrish
adcunn ldlanlldllm Inst

1l
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Bombay lndu

gam abhuhau
KeJ ummmt Inst.
ngalore 1, fndla

Prolessor Edusrde Valensuels
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Santiago, Chile

Me. Cosareo Villegas
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Mwmvld“; Umulv

Additlonsl coples for project |
and assi; wﬂ,m o’; e “‘m
reserve for future mulmum

Cortract Nonr 228(83)
M? 1961
429)




